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Minimizing Angular Error (AE) in 2D magnetic sensors 
by Non-Orthogonality Correction 

Introduction 
Magnetic sensors can be used for rotation detection. 
For this, usually a small magnet is attached to a shaft 
(or any other rotational axis). Thus, when the shaft 
rotates, the magnetic sensor will detect the change of 
the magnetic field orientation. Such magnetic sensors 
are also called 2D magnetic sensors. 

The main component of our 2D magnetic sensors are 
based on arrays of magnetic tunnel junction (MTJ) 
cells (see Figure 1). Each MTJ cell is mainly 
composed by: 1) a pinned layer (PL) where the 
magnetization of such layer is fixed, 2) a sense layer 
(SL) where its magnetization can easily be oriented 
along the direction of the applied magnetic field and 
3) a tunnel barrier between both PL and SL.  

 

Figure 1: Schematic of a MTJ cell under the effect 
of an external magnetic field H. 

The resistance R of each MTJ cell is dependent on 
the relative orientation θ between PL magnetization 
and SL magnetization due to the Tunneling Magneto-
Resistance (TMR) effect: 

Where G is the conductivity, ∆G is the change of 
conductivity due to the TMR effect and G0 is the 
average conductivity between parallel and antiparallel 
configuration of the MTJ structure.  

Thus, by changing the orientation of the applied 
magnetic field a variation of the output voltage is 
obtained. 

A Wheatstone bridge architecture (see Figure 2) 
enables to obtain an output voltage VOUT that is 
proportional to a sinusoidal signal with respect to 
θ. For this, each branch of the Wheatstone bridge 
consists of an array of MTJ dots connected in series 
and/or parallel. The orientation of the PL (arrows in 
Figure 2) is similar for diagonal branches (R1 and R4 
or R2 and R3 in Figure 2) and opposite for those 
branches constituting a half bridge (R1 and R2 or R3 
and R4 in Figure 1). Considering this: 

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐷𝐷𝐷𝐷

= �
𝑅𝑅2(𝜃𝜃)

𝑅𝑅1(𝜃𝜃) + 𝑅𝑅2(𝜃𝜃) −
𝑅𝑅4(𝜃𝜃)

𝑅𝑅3(𝜃𝜃) + 𝑅𝑅4(𝜃𝜃)�     𝐸𝐸𝐸𝐸(2) 

where VDD is the applied voltage. Therefore, if all 
branches have similar resistances and considering 
Eq.1, VOUT can be written as: 
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� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                𝐸𝐸𝐸𝐸 (3) 

 

In order to ensure, however, an unambiguous 
determination of θ, 2D sensors are usually based on 
two Wheatstone bridges where the orientation of the 
PLs are mutually orthogonal. By this configuration, 
two voltage outputs VSIN and VCOS are generated by 
the 2D sensor, where VCOS follows a cosine (COS) 
signal and VSIN follows a sine (SIN) signal (see Figure 𝑅𝑅(𝜃𝜃) =

1
𝐺𝐺(𝜃𝜃) =

1
𝐺𝐺0 + ∆𝐺𝐺 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

               𝐸𝐸𝐸𝐸 (1) 
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2). Thus, the measured angle θmeas will be determined 
by the arc tangent of the ratio between both signals:  

𝜃𝜃𝑚𝑚𝑒𝑒𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆
𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶

�                      𝐸𝐸𝐸𝐸 (4)            

and Angular Error (AE) is the parameter that 
determines the accuracy of the measured angle 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 

AE = 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −  𝜃𝜃                                𝐸𝐸𝑞𝑞 (5)                         

Several factors can lead however to a significant AE. 
One of the issues that is addressed in this application 
is the parameter dependence of AE, as well as 
different correction approaches that can be 
considered in order to mitigate their impact on AE.   

 

Figure 2: Schematic of a Wheatstone bridge 
architecture with 4 MTJ branches. Arrows show 
the orientation of the PL for each MTJ branch. 

Parameter Dependence of AE 
The output voltage of a 2D magnetic sensor with two 
(2) Wheatstone bridges can generally be written as: 
𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 = [𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]         𝐸𝐸𝐸𝐸 (6𝑎𝑎)   

𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 = [𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆) + 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆]            𝐸𝐸𝐸𝐸 (6𝑏𝑏)          

 

Figure 3: Typical angular dependence of the 
output voltage of a 2D magnetic sensor with two 
Wheatstone bridges, one orthogonally oriented 
with respect to the other.   

Where ACOS, ASIN are the amplitude, CCOS, CSIN are the 
offset and 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶, 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 are the phase shift of both COS 
and SIN bridges. Note that both amplitudes and 
offsets are now normalized parameters with respect 
to the applied voltage VDD so VCOS and VSIN can be 
expressed in mV/V. 

Ideally, if both bridges present no offset (CCOS = CSIN 
= 0), no phase shift (𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 = 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆  = 0) and their 
amplitudes are the same (ACOS = ASIN), AE = 0. Any 
situation different from this would lead to an AE ≠ 0.  

Figures 4, 5 and 6 summarizes the impact on AE for 
such parameters. Figure 4 shows how AE increases 
with both amplitude changes (∆ACOS, ∆ASIN) while 
Figure 5 and 6 shows how AE increases with offset 
changes and phase shift changes, respectively. In all 
three figures, normalized output voltages (VCOS/ACOS 
and VSIN/ASIN) are considered so Eq. 6a and 6b 
becomes: 
𝑣𝑣𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶) + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴𝐶𝐶𝐶𝐶𝑆𝑆⁄ )        𝐸𝐸𝐸𝐸 (7𝑎𝑎)   

𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆) + (𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆⁄ )           𝐸𝐸𝐸𝐸 (7𝑏𝑏)   

Initial conditions are with no offset (CCOS = CSIN = 0) 
nor any phase shift (𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 = 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆  = 0) as for an ideal  
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Figure 4: a) Increase of AE due to amplitude 
increase on both bridges. ∆Xamp and ∆Yamp are 
the variation ratio of both amplitude voltages. 
Dashed lines show increase of Sync direction. b) 
∆AE vs. ∆Sync. 

2D sensor. Changes in amplitudes and offsets can 
therefore expressed in percentage (%) with respect to 
their initial amplitudes ACOS and ASIN. Dashed lines on 
Figures 5a, 6a and 7a show the direction of variation 
of synchronism (Sync = ACOS/ASIN), total offset (C = 

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆2 ), and non-orthogonality (Non-Orth) 

between both bridges. As we can see from these 
figures, those are the real parameters that determine 
AE.  

Figures 4b, 5b and 6b plots the variation of AE vs. 
Sync, total offset, and Non-Orth respectively. In all 
three cases ∆AE is linear with respect to their variation 
(see Table I for summary of such variations).  

Note also, that the harmonic contributions to the AE 
are not the same for all three parameters (see Table 
I). Figure 7 shows the angular dependence of AE for  

 

Figure 5: a) Increase of AE due to offset increase 
on both bridges. ∆Xoff and ∆Yoff are the variation 
ratio of both offset voltages b) ∆AE vs. ∆Total 
Offset. 

all three cases: a) Sync ≠ 1 (AESync), b) Offset ≠ 0 
(AEOff) and c) non-orthogonality ≠ 0 (AEOrth). As we 
can observe, mismatch amplitude (Figure 8a) and 
phase shift (Figure 7c) induce each of them an AE 
with a periodicity of π (2nd harmonic) while offset 
contributions induce an AE with a periodicity of 2π (1st 
harmonic). Each contribution to the AE could 
therefore be expressed as:  

𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜃𝜃)                                        𝐸𝐸𝐸𝐸(𝐴𝐴)  

𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 = −𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂0 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 − 𝜑𝜑)                                𝐸𝐸𝐸𝐸(𝐵𝐵)   
𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂ℎ = 𝐴𝐴𝐴𝐴𝑂𝑂𝑟𝑟𝑟𝑟ℎ0 ∙ [1 + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜃𝜃)]                           𝐸𝐸𝐸𝐸(𝐶𝐶)    
Where 𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 , 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂0  and 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂ℎ0  are the slopes of 
Figure 4b, Figure 5b and Figure 6b respectively which 
values are shown in Table 1 and 𝜑𝜑 = 
arctan(𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)⁄ . 
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Figure 6: a) Increase of AE due to phase shift 
increase on both bridges. Dashed lines show 
increase of non-orthogonality. b) ∆AE vs. ∆Orth. 

Parameter 
Increase ∆AE (°) Harmonic 

Contribution 
Sync 0.29°/0.01 2nd  

Total Offset 0.6°/% 1st  
Orth 0.5°/° 2nd  

Table 1: ∆AE ratio for each parameter increase 
and its harmonic contribution to AE.  

These equations show that no possible cancelation of 
AE can be obtained by the combination of all three 
contributions. However, it also implies that the total 
AE induced by a combination of such three 
contributions will always be smaller than the addition 
of each individual contribution. Figure 7d shows the 
total AE obtained when combining all three 
contributions (Figures 7a, 7b and 7c) is ~ 1.16° which 
is smaller than 0.57° + 0.57° + 0.50° = 1.64°. Note that 
Figure 7d can be obtained either by calculating the 
total AE from Eq. 6a and Eq. 6b or by adding Eq. (A), 
Eq (B) and Eq. (C). 

 

Figure 7: Angular dependence of AE for a) Sync = 
1.02, CCOS = CSIN = 0 and  𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪 = 𝜶𝜶𝑺𝑺𝑺𝑺𝑺𝑺  = 0; b) Sync 
= 1.0, CSIN/ASIN = 1% , CCOS = 0 and  𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪 = 𝜶𝜶𝑺𝑺𝑺𝑺𝑺𝑺  = 0; 
c) Sync = 1.0, CCOS = CSIN = 0,  𝜶𝜶𝑺𝑺𝑺𝑺𝑺𝑺  = 0  and  𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪 
= 1.0°.                                                                                                                                                                                                                                                                                                                                                                                              

It is clear, therefore, that mismatched amplitudes (or 
synchronism) and offsets of VOUT as well as non-
orthogonality between both bridges can have a big 
impact on AE. The following proposed correction 
methods will enable to rectify such contributions to 
improve accuracy on angle determination. 

Method 1: AENorm 
This method (also called “normalization correction”) 
consists on the subtraction of the offset and 
normalization of the output voltage of each bridge. By 
this, a VCOS

norm and VSIN
norm are obtained:  

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶⁄                                𝐸𝐸𝐸𝐸(8𝑎𝑎) 
 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 −  𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆) 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆⁄                                 𝐸𝐸𝐸𝐸(8𝑏𝑏) 

Which means, by considering Eq. 6a and 6b, that: 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃 + 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶)                                           𝐸𝐸𝐸𝐸(9𝑎𝑎) 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆)                                          𝐸𝐸𝐸𝐸(9𝑏𝑏) 
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Thus, the measured angle will be determined by the 
arc tangent ratio between 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and  𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 : 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�                                           𝐸𝐸𝐸𝐸 (10)            

and the normalized Angular Error (AENorm) would 
be: 

AENorm = 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 −  𝜃𝜃                                            𝐸𝐸𝐸𝐸 (11)    

This correction method would only require a first 
calibration procedure consisting on performing a 
unique rotational loop measurement. Then, by 
determining the maximum and minimum output 
voltages for each bridge 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0 , 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0  can 
be determined: 

𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0 = �𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄                    𝐸𝐸𝐸𝐸 (12𝑎𝑎)                         

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0 = �𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄                    𝐸𝐸𝐸𝐸 (12𝑏𝑏)                   

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0 = �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄                    𝐸𝐸𝐸𝐸 (12𝑐𝑐)                         

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0 = �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄                    𝐸𝐸𝐸𝐸 (12𝑑𝑑)                   

Such 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0 , 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0  parameters will then be 
used as parameter corrections of all measured data 
(VCOS and VSIN)  so: 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆0 � 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0⁄                                𝐸𝐸𝐸𝐸(13𝑎𝑎) 
 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0 � 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0⁄                                 𝐸𝐸𝐸𝐸(13𝑏𝑏) 

 
and the measured angle will be determined by Eq.10. 

Important improvements on AE can be obtained when 
considering the normalization of output voltages as 
observed in Figure 8. In this case, similar 
contributions of Sync, offset and phase shift as 
observed in Figure 7d are considered. By this 
correction method, reduction of AE from ~1.16° (black 
curve) to ~ 0.5° (red curve) is obtained. 

Method 2: AECorr 
Large reduction of AE can be obtained by 
normalization calibration (AENorm). However, 
possible contribution on AE from non-orthogonality 
can still be present as observed in Figure 8 (see red 
curve). Indeed, in such a case a non-orthogonality of 
1.0° leads to an AENorm ~ 0.5°.   

In order to remove such an effect, we need to expand 
Eq. 9a and Eq 9b: 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶       𝐸𝐸𝐸𝐸(12𝑎𝑎) 
 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆        𝐸𝐸𝐸𝐸(12𝑏𝑏) 

 
Then, considering small orthogonality deviations (i.e. 
small phase shifts 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆  0°) we obtain that:  

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛~ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛼𝛼𝐶𝐶𝑂𝑂𝑆𝑆 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                   𝐸𝐸𝐸𝐸 (13𝑎𝑎) 
 
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ~ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                     𝐸𝐸𝐸𝐸 (13𝑏𝑏) 

This, can be expressed in the following matrix form: 

�
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚
� = �

1 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆

−𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 1
� ∙ �

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�             𝐸𝐸𝐸𝐸 (14) 

Then, by inverting this system of matrix equations and 
keeping only linear terms of 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆, we have: 

�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� = �

1 −𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆

𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 1
� ∙ �

𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
�              𝐸𝐸𝐸𝐸(15)             

Which is equivalent to: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                                 𝐸𝐸𝐸𝐸 (16𝑎𝑎)          

cos𝜃𝜃 ~ 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +  𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛                              𝐸𝐸𝐸𝐸 (16𝑏𝑏) 

Thus, the measured angle will be determined by: 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆∙𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶∙𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+ 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�                     𝐸𝐸𝐸𝐸 (17)            
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And the corrected Angular Error (AECorr) will be 
described as: 

AECorr = 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝜃𝜃                                                𝐸𝐸𝐸𝐸 (18)   

 

Figure 8: Angular dependence of AE for 2D sensor 
with Sync = 1.02, CSIN/ASIN = 1% and 𝜶𝜶𝑪𝑪𝑪𝑪𝑪𝑪 = 1.0°. 
AEraw (black curve) refers to the AE derived 
without any correction method. AENorm (red 
curve) refers to the AE derived from normalization 
correction and AECorr (blue curve) refers to the 
AE derived from non-orthogonality correction 
method. 

This correction method (also called “non-orthogonality 
correction”) requires, like normalization correction 
method, a first calibration procedure consisting on 
performing a unique rotational loop measurement.  
After this measurement, and in order to derive all 
required parameters (𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0 , 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0 , 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶0  
and 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆0 ) both 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 data need to be fitted 
following Eq. 6a and Eq. 6b. Then considering such 
parameters as parameter corrections for all next 
measured data (VCOS and VSIN) the measured angle 
can therefore be determined by Eq. 8a, Eq. 8b and 
Eq. 17.  

Complete reduction of AE can be achieved by this 
correction method. Figure 8 shows the performance 
of “non-orthogonality correction” to reduce AE ~ 0° 
(blue curve) in comparison to previous “normalization 
correction” (red curve). 

 

Figure 9: a) AECorr (determined by Eq. 17) vs. 
non-orthogonality. Black dashed lines indicate 
the usual AE resolution in a 2D magnetic sensor. 
C ~ 0.0041 and β ~ 2.04; b) angular dependence of 
AECorr with non-orthogonality of 30° when 
determining AECorr by Eq. 17 (blue curve) or by 
Eq. 21 (green curve). 

As a matter of fact, Eq. 17 enables AE corrections for 
non-orthogonality values up to 2°. Figure 9a shows 
AECorr derived from Eq. 17 for a large range of non-
orthogonality values showing almost a quadratic 
dependence. Thus, for a non-orthogonality < 1°, an 



 

  

© 2020 Crocus Technology               7 
Document #: AN126 – Minimizing AE by Non-Orthogonality Correction Rev 0.1 

 

AECorr as low as 0.001° could be obtained, which is 
close to the maximum AE resolution such sensors 
usually hold. However, in case that unusually large 
non-orthogonality values (>5°) were present, a more 
general expression would be necessary to consider.  

Indeed, Eq. 12a and Eq. 12b can expressed in the 
following matrix form: 

�
𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
� = �

𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆

−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑂𝑂𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶
� ∙ �

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�   𝐸𝐸𝐸𝐸(19) 

Then, by inverting this system of matrix equations, we 
have: 

�
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
� =

1
𝐾𝐾 �

𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 −𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆

𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆
� ∙ �

𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
�𝐸𝐸𝐸𝐸(20) 

With: 

𝐾𝐾 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆 − 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶) 

Thus, the measured angle will be determined by: 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶∙𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆∙𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶∙𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆∙ 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�   𝐸𝐸𝐸𝐸 (21)    

Figure 9b shows that such generalized non-
orthogonal correction method enables to reduce AE ~ 
0° (see green curve) even for a non-orthogonality of 
~30°. 

Therefore, in general, “non-orthogonality correction” 
enables to achieve higher angle accuracy than 
“normalized correction” without adding much 
complexity on the one-step calibration operation. 

Stability of Correction 
After such corrections, all 2D magnetic sensors will be 
able to guarantee an AENom < AENorm0 (being 
AENorm0 the max. AE after “normalization 

correction”) or an AECorr < AECorr0 (being AECorr0 

the max. AE after “non-orthogonality correction”). 

Moreover, the parameters derived from the one-step 
calibration procedure in both correction methods 
(𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶0 , 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0  for “normalization 
correction” or 𝐴𝐴𝐶𝐶𝑂𝑂𝑂𝑂0 , 𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆0  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆0 , 𝛼𝛼𝐶𝐶𝐶𝐶𝐶𝐶0  and 𝛼𝛼𝑆𝑆𝑆𝑆𝑆𝑆0  
for “non-orthogonality correction”) will be used during 
the whole lifetime of the sensor. This implies that such 
correction methods need to be stable for all working 
conditions, in other words, AENorm (or aAECorr) 
need to be stable for a certain temperature and 
magnetic field range.  

 

Figure 10: ∆AE map vs. ∆Sync and ∆Offset. Here 
non-orthogonality was considered (αCOS and αSIN = 
0).   

In order to guarantee this, it is important to ensure a 
minimum variation of synchronism, offset and 
orthogonality under such working conditions. Figure 
10 shows a map of ∆AE vs. variation of ∆Sync and 
∆Offset. The contour lines of constant ∆AE follow a 
“diamond-like” shape. This map enables, therefore, to 
determine all possible variations of Sync and Offset 
that a 2D magnetic sensor could experience in order 
to guarantee an increase of AE below a certain level. 
Thus, for instance, if we want to ensure that after one-
step calibration our sensors have a maximum 
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increase of ∆AENorm < 0.1° with temperature, it 
would be necessary, according to Figure 10, that 
∆Sync < 0.3% and ∆Offset < 0.6% (see stars on 
Figure 10).  

Note, that similar conclusion could also be obtained 
from Table I being therefore very useful to quickly 
determine the maximum variation of Sync, total offset, 
and orthogonality for a certain increase of AE (∆AE).  

Similar analysis can also be done for non-
orthogonality correction method which would enable 
to determine the max. variation of all three parameters 
to ensure a stable AECorr. 

To conclude, stability of synchronism, offset and 
orthogonality are therefore crucial to ensure such 
calibration methods as a one-step calibration process 
that would be used during the whole lifetime of the 
sensor 

Summary 
Amplitude mismatch (synchronism), offset and non-
orthogonality between both Wheatstone bridges 
impact the accuracy of the measured angle in 2D 
sensors. Several correction methods to minimize the 
AE induced by such parameters have been presented 
here. 

The first method relies on normalization of measured 
voltages enabling to remove synchronism and offset 
contributions. This simple technique requires one-
time calibration operation and basic calculation 
computation. After correction parameters derived, 
they are used for rectification of all subsequent 
measurements. This method, however, does not 
correct non-orthogonality contributions on AE. 

The second method relies on complete correction 
(amplitude mismatch, offset and non-orthogonality) of 
measured voltages by a fitting procedure. This 
technique requires also one-time calibration operation 

with only one additional calculation step with respect 
to normalization correction. After correction 
parameters derived, subsequent measurements are 
rectified by using such parameters 

By such corrections, the maximum AE of the 2D 
magnetic sensor can substantially be reduced 
improving the accuracy of the measured angle.  

Both correction methods rely on the stability of 
synchronism, offset and non-orthogonality with 
respect other parameters like temperature and 
magnetic field. 
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