Smart Locks

Relevant Products

- CT81xx – Digital Switch Series

Introduction

New keyless, smart locks are emerging and replacing the traditional key deadbolt locks. With this new technology, the key is no longer used, and the deadbolt position is now controlled by the smart lock itself and not the user with their key. Manufacturers of the new smart locks use various methods to determine the deadbolt position and travel. As with any security-based product, reliability and repeatability are a stringent requirement. The absolute position of the deadbolt needs to be known for the lock to accurately work with no issue. Hence, implementation of a sensor system to determine absolute position is the best solution. Crocus Technology offers switches that when used with a complementary magnet will provide absolute position feedback. This solution will be plug ‘n play and does not require the user to run through a complicated calibration procedure for some smart locks. As the smart locks are battery operated, the CT81xx Series will provide extended life drawing less than 110 nA of current.

Also of note, an additional switch can be integrated into the smart lock design to determine if the door is open or closed. This is an added feature that can alert the user of any security issues.

Smart Lock System Diagram

A simplified smart lock system is comprised of a powersource, MCU, communications, keypad, and sensors:

![Smart Lock System Diagram](image)

Features and Benefits

- Accurate deadbolt position detection
- Long battery life with less than 110 nA
- Plug and play implementation
- Digital output
- Cost Competitive

Deadbolt Implementation

The deadbolt position sensing can be implemented in two different ways: 1) Sensing cylinder rotation position as shown in Figure 1. 2) Sensing actual travel of the deadbolt as shown in Figure 2.

![Figure 1 Cylinder Rotation Sensing Example](image)
Cylinder Rotation Sensing

As the cylinder rotation is mechanically linked to the deadbolt position, knowing the cylinder location will correlate directly to the deadbolt position. As shown in Figure 2, by using two magnets to identify full travel of the cylinder in both the clockwise (CW) and counter-clockwise (CCW) position, the sensor will provide accurate information as to where the deadbolt position is, “locked” or “unlocked” position.

Similarly, the deadbolt position can be determined by mounting a magnet to the deadbolt itself. A sensor switch is located at both the “locked” and “unlocked” position. When the magnet aligns with either switch, the switch will turn on and communicate the deadbolt’s position.

Deadbolt Position Sensing

Similarly, the deadbolt position can be determined by mounting a magnet to the deadbolt itself. A sensor switch is located at both the “locked” and “unlocked” position. When the magnet aligns with either switch, the switch will turn on and communicate the deadbolt’s position.

Door Security Feature

The smart lock can also incorporate the CT81xx Series switch to signal an “open” or “closed” door condition. As shown in Figure 3, by aligning the switch and complementary magnet to the strike of the door, the sensor output will signal low for a closed-door condition or high for an open-door condition.

For example, by mating the CT81xx switch with a ceramic magnet with surface magnetic field strength $B = 220$ Gauss (or 22 mT), the sensor will perform as illustrated in Figure 4. In the closed-door condition, the switch output will be in the low state. As the door opens, the switch will remain low until the Release Point, B_{RP}, is reached. At the B_{RP}, the output will switch to high signaling an open-door condition.

Conversely, as the door is closed, the sensor is in the high state until the Operating Point, B_{OP}, is reached. At the B_{OP}, the output switches low and signals the close door condition.
As shown in Figure 5, the application circuit is very user friendly and can be easily integrated into the smart lock system design.

Figure 3 Door Position Detection Example

Magnet Manufacturer: Ningo Magnetics Factory, Ltd.
Magnet Model #: 07002

Magnet Surface Field Strength: 220 Gauss (22 mT)
Disc Dimensions: Diameter = 12 mm, Height = 5 mm

Other Information

Please check our website www.crocus-technology.com for additional documentation or contact support@crocus-technology.com.